Error
  • JUser::_load: Unable to load user with id: 67

Featured Articles

5th Generation Broadwell 14nm family comes in three lines

5th Generation Broadwell 14nm family comes in three lines

Intel's 5th Core processor family, codenamed Broadwell, will launch in three lines for the mobile segment. We are talking about upcoming…

More...
Broadwell Chromebooks coming in late Q1 2015

Broadwell Chromebooks coming in late Q1 2015

Google's Chromebook OS should be updating automatically every six weeks, but Intel doesn't come close with its hardware refresh schedule.

More...
New round of Nexus phone rumour kicks off

New round of Nexus phone rumour kicks off

Rumours involving upcoming Nexus devices are nothing uncommon, but this year there is a fair bit of confusion, especially on the…

More...
Nvidia officially launches the 8-inch Shield Tablet

Nvidia officially launches the 8-inch Shield Tablet

As expected and reported earlier, Nvidia has now officially announced its newest Shield device, the new 8-inch Shield Tablet. While the…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Wednesday, 11 April 2007 11:59

IBM speeds 3D images

Written by

Image

Servers helps cure the cancer

IBM has tinkered with parallel computer architecture in a bid to dramatically speed the processing of 3-D medical images.

By porting and optimisation of Mayo Clinic's Image Registration Application on the IBM BladeCenter QS20 "Cell Blade” managed to process images more than 50 times faster than traditional methods.

The results will be presented in full in a joint presentation by Mayo Clinic and IBM at the IEEE (Institute of Electrical and Electronics Engineers) International Symposium on Biomedical Imaging in Washington, next week. Doctors have been using several sources including magnetic resonance imaging (MRI) and computerized tomography (CT) scans to generate the accuracy of scans.

However when three dimensions and millions of pixels are involved, the task becomes exponentially complex.

The Mayo Clinic and IBM used 98 sets of images. It took seven hours to process 98 sets of images using traditional methods. But with a "mutual-information-based" 3-D linear registration algorithm application optimized for Cell/B.E. and completed the registration for all 98 sets of images in just 516 seconds.

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments