Error
  • JUser::_load: Unable to load user with id: 67

Featured Articles

Intel takes credit for three-way 4K gaming

Intel takes credit for three-way 4K gaming

All of a sudden Intel is talking about desktop gaming like there is no tomorrow and it is pushing it. The…

More...
Nvidia Shield Tablet 32GB 4G LTE out for pre orders

Nvidia Shield Tablet 32GB 4G LTE out for pre orders

Nvidia has finally revealed the shipping date of its Shield Tablet 32GB in 4G LTE flavour and in case you pre-order…

More...
Apple announces its Apple Watch

Apple announces its Apple Watch

Apple has finally unveiled its eagerly awaited smartwatch and surprisingly it has dropped the "i" from the brand, calling it simply…

More...
Skylake 14nm announced

Skylake 14nm announced

Kirk B. Skaugen, Senior Vice President General Manager, PC Client Group has showcased Skylake, Intel’s second generation 14nm architecture.

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Wednesday, 11 April 2007 11:59

IBM speeds 3D images

Written by

Image

Servers helps cure the cancer

IBM has tinkered with parallel computer architecture in a bid to dramatically speed the processing of 3-D medical images.

By porting and optimisation of Mayo Clinic's Image Registration Application on the IBM BladeCenter QS20 "Cell Blade” managed to process images more than 50 times faster than traditional methods.

The results will be presented in full in a joint presentation by Mayo Clinic and IBM at the IEEE (Institute of Electrical and Electronics Engineers) International Symposium on Biomedical Imaging in Washington, next week. Doctors have been using several sources including magnetic resonance imaging (MRI) and computerized tomography (CT) scans to generate the accuracy of scans.

However when three dimensions and millions of pixels are involved, the task becomes exponentially complex.

The Mayo Clinic and IBM used 98 sets of images. It took seven hours to process 98 sets of images using traditional methods. But with a "mutual-information-based" 3-D linear registration algorithm application optimized for Cell/B.E. and completed the registration for all 98 sets of images in just 516 seconds.

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments