Featured Articles

Analysts expect ARM to do well next year

Analysts expect ARM to do well next year

British chip designer ARM could cash in on the mobile industry's rush to transition to 64-bit operating systems and hardware.

More...
Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Samsung has lost smartphone market share, ending the quarter on a low note and Xiaomi appears to be the big winner.

More...
Intel Broadwell 15W coming to CES

Intel Broadwell 15W coming to CES

It looks like Intel will be showing off its 14nm processors, codenames Broadwell, in a couple of weeks at CES 2015.

More...
Gainward GTX 980 Phantom reviewed

Gainward GTX 980 Phantom reviewed

Today we’ll be taking a closer look at the recently introduced Gainward GTX 980 4GB with the company’s trademark Phantom cooler.

More...
Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac has been in the nettop and mini-PC space for more than four years now and it has managed to carve…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 25 January 2011 10:42

Boffins come up with universal memory

Written by Nick Farell
y_exclamation

Speed of DRAM with the density of Flash
Boffins at Carolina State University have come up with a "universal" memory technology that combines the speed of DRAM with the non-volatility and density of flash.

Professor Paul Franzon told EE Times that the new memory technology should enable computers to power down memories not currently being accessed, drastically cutting the energy consumed by computers of all types, from mobile and desktop computers to server farms and data centers.

The technology uses a double floating-gate field-effect-transistor (FET) is as fast as DRAM and will need to be refreshed as often. However the densities will be about the same as flash.

The double floating-gates use direct tunneling when storing charge to represent bits. This means that the whole lot is done at lower voltages.

The first floating-gate requires refreshing about as often as DRAM. But if the boffins turn up the voltage its data value can be transferred to the second floating-gate, which acts more like a traditional flash memory, offering long-term nonvolatile storage.

The upshot is that a computer can operate normally until they become idle. Then their data values are transferred to the second gate in order to power down the memory chip.  When the computer needs the stored values, the second gate quickly transfers their stored charge back to the first gate and normal operations can resume.

Franzon said that the method will  enable power-proportional computing, by allowing memory to be turned off during periods of low use.


blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments