Featured Articles

Nvidia Shield 2 shows up in AnTuTu

Nvidia Shield 2 shows up in AnTuTu

Nvidia’s original Shield console launched last summer to mixed reviews. It went on sale in the US and so far Nvidia…

More...
AMD CSO John Byrne talks ARM

AMD CSO John Byrne talks ARM

We had a chance to talk about AMD’s upcoming products with John Byrne, Chief Sales Officer, AMD. We covered a number…

More...
AMD Chief Sales Officer thinks GPU leadership is critical

AMD Chief Sales Officer thinks GPU leadership is critical

We had a chance to talk to John Byrne who spent the last two years as Senior Vice President and Chief…

More...
OpenPlus One $299 5.5-inch Full HD phone

OpenPlus One $299 5.5-inch Full HD phone

OnePlus is one of the few small companies that might disrupt the Android phone market, dominated by giant outfits like Samsung.…

More...
KFA2 GTX 780 Ti Hall Of Fame reviewed

KFA2 GTX 780 Ti Hall Of Fame reviewed

KFA2 gained a lot of overclocking experience with the GTX 780 Hall of Fame (HOF), which we had a chance to…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 15 March 2011 10:35

Boffins come up with new low power memory

Written by Nick Farell
y_exclamation

Faster than any thing else out there
Boffins from the  Electrical and Computer Engineering Department of the University of Illinois have emerged from their smoke filled labs with a new low-power  memory which uses much less power and is faster. It will mean that consumer devices like smartphones and laptops will have a much longer battery life and probably lead to peace in our lunchtime.

For a while boffins have been playing around with phase-change materials (PCM) as an alternative to the kind of memory that stores bits as a charge. The good side of PCM is that each bit is stored in the resistance of the material itself and can be reversibly switched with short voltage pulses.

This means that you get low voltage operation, fast access times and high endurance. However the problem was that you needed a high programming current to couple Joule heat to finite bit volume, which is a bit of a downer.

Professor Eric Pop managed to lower the power per bit to a fraction of that used for existing PCM  by using carbon nanotubes. The device is initially in the off state until a voltage is applied to the nanotube that switches the PCM bit to an on state.

More here.


Last modified on Tuesday, 15 March 2011 10:40
blog comments powered by Disqus

Comments  

 
+5 #1 Kakkoii 2011-03-15 20:42
Carbon nano-tubes and graphene truly are the future of computing. New advances with it all the time in so many different applications.

(Obviously Quantum computing is the future also, but probably a bit further down the road and used in conjunction with these materials)
 
 
+1 #2 FoxMontage 2011-03-16 12:23
Graphene yes, carbon nanotubes no. Much of the research on carbon nanotubes has dwindled because of the fact that when they are fabricated, you get a mixture of conducting and semiconducting tubes (depending on the tubes chirality).

This makes it very hard to think about integrating them into devices because each type has very different electrical properties. Until this problem can be solved, they will remain in the test lab.
 

To be able to post comments please log-in with Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments