Featured Articles

LG G Watch R ships in two weeks

LG G Watch R ships in two weeks

The LG G Watch R, the first Android Wear watch with a truly round face, is coming soon and judging by…

More...
LG unveils NUCLUN big.LITTLE SoC

LG unveils NUCLUN big.LITTLE SoC

LG has officially announced its first smartphone SoC, the NUCLUN, formerly known as the Odin.

More...
Microsoft moves 2.4 million Xbox Ones

Microsoft moves 2.4 million Xbox Ones

Microsoft has announced that it move 2.4 million consoles in fiscal year 2015 Q1. The announcement came with the latest financial…

More...
Gainward GTX 970 Phantom previewed

Gainward GTX 970 Phantom previewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
EVGA GTX 970 SC ACX 2.0 reviewed

EVGA GTX 970 SC ACX 2.0 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 15 March 2011 10:35

Boffins come up with new low power memory

Written by Nick Farell
y_exclamation

Faster than any thing else out there
Boffins from the  Electrical and Computer Engineering Department of the University of Illinois have emerged from their smoke filled labs with a new low-power  memory which uses much less power and is faster. It will mean that consumer devices like smartphones and laptops will have a much longer battery life and probably lead to peace in our lunchtime.

For a while boffins have been playing around with phase-change materials (PCM) as an alternative to the kind of memory that stores bits as a charge. The good side of PCM is that each bit is stored in the resistance of the material itself and can be reversibly switched with short voltage pulses.

This means that you get low voltage operation, fast access times and high endurance. However the problem was that you needed a high programming current to couple Joule heat to finite bit volume, which is a bit of a downer.

Professor Eric Pop managed to lower the power per bit to a fraction of that used for existing PCM  by using carbon nanotubes. The device is initially in the off state until a voltage is applied to the nanotube that switches the PCM bit to an on state.

More here.


Last modified on Tuesday, 15 March 2011 10:40
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments