Featured Articles

TSMC: Volume production of 16nm FinFET in 2H 2015

TSMC: Volume production of 16nm FinFET in 2H 2015

TSMC has announced that it will begin volume production of 16nm FinFET products in the second half of 2015, in late…

More...
AMD misses earnings targets, announces layoffs

AMD misses earnings targets, announces layoffs

AMD has missed earnings targets and is planning a substantial job cuts. The company reported quarterly earnings yesterday and the street is…

More...
Did Google botch the Nexus 6 and Nexus 9?

Did Google botch the Nexus 6 and Nexus 9?

As expected, Google has finally released the eagerly awaited Nexus 6 phablet and its first 64-bit device, the Nexus 9 tablet.

More...
Gainward GTX 970 Phantom previewed

Gainward GTX 970 Phantom previewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
EVGA GTX 970 SC ACX 2.0 reviewed

EVGA GTX 970 SC ACX 2.0 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 15 March 2011 10:35

Boffins come up with new low power memory

Written by Nick Farell
y_exclamation

Faster than any thing else out there
Boffins from the  Electrical and Computer Engineering Department of the University of Illinois have emerged from their smoke filled labs with a new low-power  memory which uses much less power and is faster. It will mean that consumer devices like smartphones and laptops will have a much longer battery life and probably lead to peace in our lunchtime.

For a while boffins have been playing around with phase-change materials (PCM) as an alternative to the kind of memory that stores bits as a charge. The good side of PCM is that each bit is stored in the resistance of the material itself and can be reversibly switched with short voltage pulses.

This means that you get low voltage operation, fast access times and high endurance. However the problem was that you needed a high programming current to couple Joule heat to finite bit volume, which is a bit of a downer.

Professor Eric Pop managed to lower the power per bit to a fraction of that used for existing PCM  by using carbon nanotubes. The device is initially in the off state until a voltage is applied to the nanotube that switches the PCM bit to an on state.

More here.


Last modified on Tuesday, 15 March 2011 10:40
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments