Featured Articles

Intel refreshes CPU roadmap

Intel refreshes CPU roadmap

Intel has revealed an update to its CPU roadmap and some things have changed in 2015 and beyond. Let’s start with the…

More...
Hands on: Nvidia Shield Tablet with Android 5.0

Hands on: Nvidia Shield Tablet with Android 5.0

We broke the news of Nvidia's ambitious gaming tablet plans back in May and now the Shield tablet got a bit…

More...
Nokia N1 Android tablet ships in Q1 2015

Nokia N1 Android tablet ships in Q1 2015

Nokia has announced its first Android tablet and when we say Nokia, we don’t mean Microsoft. The Nokia N1 was designed…

More...
Marvell launches octa-core 64-bit PXA1936

Marvell launches octa-core 64-bit PXA1936

Marvell is better known for its storage controllers, but the company doesn’t want to give up on the smartphone and…

More...
Nvidia GTX 970 SLI tested

Nvidia GTX 970 SLI tested

Nvidia recently released two new graphics cards based on its latest Maxwell GPU architecture, with exceptional performance-per-watt. The Geforce GTX 970…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 07 February 2012 12:42

Boffins create optical fibre junction

Written by Nick Farrell



Fibre has built in electrics


Researchers at Pennsylvania State University researchers have created optical fibre with a built-in integrated electronic component The development opens the way for more streamlined optical components. 

John Badding, a professor of chemistry who led the research said that embedding high-speed electrical devices in the fibre has never been done before Writing in the  Nature Photonics journal he said that he used a chemical procedure that involves depositing semiconducting materials layer by layer into tiny pores alongside a portion of the optical fibers, using a process called high-pressure chemical vapor deposition.

"There was a lot of chemistry that went into making this," Badding said. The researchers didn't build an entire chip in the optical line that can convert photons into electrical impulses, which then can be further processed elsewhere. The junctions themselves are five to 10 microns wide, a few centimeters long, and can ingest data from frequencies as high as 3GHz on standard single-mode optical fibres.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments