Featured Articles

Intel releases tiny 3G cell modem

Intel releases tiny 3G cell modem

Intel has released a 3G cellular modem with an integrated power amplifier that fits into a 300 mm2 footprint, claiming it…

More...
Braswell 14nm Atom slips to Q2 15

Braswell 14nm Atom slips to Q2 15

It's not all rosy in the house of Intel. It seems that upcoming Atom out-of-order cores might be giving this semiconductor…

More...
TSMC 16nm wafers coming in Q1 2015

TSMC 16nm wafers coming in Q1 2015

TSMC will start producing 16nm wafers in the first quarter of 2015. Sometime in the second quarter production should ramp up…

More...
Skylake-S LGA is 35W to 95W TDP part

Skylake-S LGA is 35W to 95W TDP part

Skylake-S is the ‘tock’ of the Haswell architecture and despite being delayed from the original plan, this desktop part is scheduled…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 07 February 2012 12:42

Boffins create optical fibre junction

Written by Nick Farrell



Fibre has built in electrics


Researchers at Pennsylvania State University researchers have created optical fibre with a built-in integrated electronic component The development opens the way for more streamlined optical components. 

John Badding, a professor of chemistry who led the research said that embedding high-speed electrical devices in the fibre has never been done before Writing in the  Nature Photonics journal he said that he used a chemical procedure that involves depositing semiconducting materials layer by layer into tiny pores alongside a portion of the optical fibers, using a process called high-pressure chemical vapor deposition.

"There was a lot of chemistry that went into making this," Badding said. The researchers didn't build an entire chip in the optical line that can convert photons into electrical impulses, which then can be further processed elsewhere. The junctions themselves are five to 10 microns wide, a few centimeters long, and can ingest data from frequencies as high as 3GHz on standard single-mode optical fibres.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments