Featured Articles

Intel refreshes CPU roadmap

Intel refreshes CPU roadmap

Intel has revealed an update to its CPU roadmap and some things have changed in 2015 and beyond. Let’s start with the…

More...
Hands on: Nvidia Shield Tablet with Android 5.0

Hands on: Nvidia Shield Tablet with Android 5.0

We broke the news of Nvidia's ambitious gaming tablet plans back in May and now the Shield tablet got a bit…

More...
Nokia N1 Android tablet ships in Q1 2015

Nokia N1 Android tablet ships in Q1 2015

Nokia has announced its first Android tablet and when we say Nokia, we don’t mean Microsoft. The Nokia N1 was designed…

More...
Marvell launches octa-core 64-bit PXA1936

Marvell launches octa-core 64-bit PXA1936

Marvell is better known for its storage controllers, but the company doesn’t want to give up on the smartphone and…

More...
Nvidia GTX 970 SLI tested

Nvidia GTX 970 SLI tested

Nvidia recently released two new graphics cards based on its latest Maxwell GPU architecture, with exceptional performance-per-watt. The Geforce GTX 970…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Monday, 12 March 2012 12:48

MIT discovers new fibre

Written by Nick Farrell



Could bring 3D displays


Boffins at MIT have found a new fibre that can emit light along its length in any direction may herald flexible 3-D displays and medical tools that activate therapeutic compounds with bursts of light.

According to MIT the new fibre was developed by Yoel Fink's group emits blue laser light only at a precisely controlled location. Most light emitters, from candles to light bulbs to computer screens, look the same from any angle. But in a paper published this week on the Nature Photonics website, MIT researchers report the development of a new light source  whose brightness can be controllably varied for different viewers.

This allows 3-D displays woven from flexible fibres that project different information to viewers’ left and right eyes. The fibre could also enable medical devices that can be threaded into narrow openings to irradiate diseased tissue, selectively activating therapeutic compounds while leaving healthy tissue untouched.

The paper is the work of seven boffins  affiliated with MIT’s Research Laboratory of Electronics (RLE), including Yoel Fink, a professor of materials science and electrical engineering.

More here.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments