Featured Articles

LG G Watch R ships in two weeks

LG G Watch R ships in two weeks

The LG G Watch R, the first Android Wear watch with a truly round face, is coming soon and judging by…

More...
LG unveils NUCLUN big.LITTLE SoC

LG unveils NUCLUN big.LITTLE SoC

LG has officially announced its first smartphone SoC, the NUCLUN, formerly known as the Odin.

More...
Microsoft moves 2.4 million Xbox Ones

Microsoft moves 2.4 million Xbox Ones

Microsoft has announced that it move 2.4 million consoles in fiscal year 2015 Q1. The announcement came with the latest financial…

More...
Gainward GTX 970 Phantom previewed

Gainward GTX 970 Phantom previewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
EVGA GTX 970 SC ACX 2.0 reviewed

EVGA GTX 970 SC ACX 2.0 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Monday, 12 March 2012 12:48

MIT discovers new fibre

Written by Nick Farrell



Could bring 3D displays


Boffins at MIT have found a new fibre that can emit light along its length in any direction may herald flexible 3-D displays and medical tools that activate therapeutic compounds with bursts of light.

According to MIT the new fibre was developed by Yoel Fink's group emits blue laser light only at a precisely controlled location. Most light emitters, from candles to light bulbs to computer screens, look the same from any angle. But in a paper published this week on the Nature Photonics website, MIT researchers report the development of a new light source  whose brightness can be controllably varied for different viewers.

This allows 3-D displays woven from flexible fibres that project different information to viewers’ left and right eyes. The fibre could also enable medical devices that can be threaded into narrow openings to irradiate diseased tissue, selectively activating therapeutic compounds while leaving healthy tissue untouched.

The paper is the work of seven boffins  affiliated with MIT’s Research Laboratory of Electronics (RLE), including Yoel Fink, a professor of materials science and electrical engineering.

More here.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments