Featured Articles

Analysts expect ARM to do well next year

Analysts expect ARM to do well next year

British chip designer ARM could cash in on the mobile industry's rush to transition to 64-bit operating systems and hardware.

More...
Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Samsung has lost smartphone market share, ending the quarter on a low note and Xiaomi appears to be the big winner.

More...
Intel Broadwell 15W coming to CES

Intel Broadwell 15W coming to CES

It looks like Intel will be showing off its 14nm processors, codenames Broadwell, in a couple of weeks at CES 2015.

More...
Gainward GTX 980 Phantom reviewed

Gainward GTX 980 Phantom reviewed

Today we’ll be taking a closer look at the recently introduced Gainward GTX 980 4GB with the company’s trademark Phantom cooler.

More...
Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac has been in the nettop and mini-PC space for more than four years now and it has managed to carve…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Monday, 02 April 2012 20:22

Flexible transparent PC memory achieved in chemistry lab

Written by Jon Worrel

memristor logo

Transparent smartphones, tablets on the horizon

Researchers at Rice University in Houston, Texas have recently made a breakthrough in the development of transparent, flexible computer memory using silicon oxide as the active component. According to university chemist James Tour, the breakthrough could soon allow for flexible, bendable touchscreens, transparent integrated circuits and flexible batteries, among other mobile hardware components.

“Generally, you can’t see a bit of memory, because it’s too small,” said Tour, Rice’s T.T. and W.F. Chao Chair in Chemistry. “But silicon itself is not transparent. If the density of the circuits is high enough, you’re going to see it.”

flexible transparent memory

Transparent memory on plastic substrate. Source: Rice University

The transparent memory breakthrough is based upon a 2010 chemistry discovery that pushing a strong charge through standard silicon oxide, an insulator widely used in electronics, forms channels of pure silicon crystals less than 5 nanometers wide. The initial voltage appears to strip oxygen atoms from the silicon oxide; lesser charges then repeatedly break and reconnect the circuit and turn it into nonvolatile memory. Nevertheless, a smaller signal can be used to poll the memory state without altering it.

Just as with Intel's 3D-stacked transistor approach in Ivy Bridge processors and beyond, researchers at Rice hope to develop a transparent memory device that can be stacked in a three-dimensional configuration and attached to a flexible substrate.

A full overview of the discovery, including a video of the work, can be found here

Jon Worrel

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments