Featured Articles

Apple iPad Air 2 costs $275 to build

Apple iPad Air 2 costs $275 to build

IHS has told Recode that the Apple iPad Air 2 16GB Wifi costs only $275 to build -- not bad…

More...
LG sells 16.8 million smartphones in Q3 14

LG sells 16.8 million smartphones in Q3 14

As Samsung is losing market share, another Korean company, which many had written off, is gaining.

More...
LG G Watch R EU price set at €299

LG G Watch R EU price set at €299

LG G Watch R is probably the best looking Android Wear device on the market and many have been waiting for…

More...
Nvidia GTX 970 SLI tested

Nvidia GTX 970 SLI tested

Nvidia recently released two new graphics cards based on its latest Maxwell GPU architecture, with exceptional performance-per-watt. The Geforce GTX 970…

More...
Gainward GTX 970 Phantom previewed

Gainward GTX 970 Phantom previewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Wednesday, 11 April 2012 12:25

Boffins have turned chips into mini-internet

Written by Nick Farrell



Not the normal way of doing things


MIT boffins have worked out a way of wiring up multi-core chips so that the they run like an internet. While this does not sound like it is much to do with chips it could be the key to building multi-core chips which work like a mini-internet.

With a chip might have six or eight cores, communicating over a bus  only one pair of cores can talk at a time.  This creates a  limitation in chips with hundreds or even thousands of cores, which many electrical engineers envision as the future of computing.

So what Li-Shiuan Peh, an associate professor of electrical engineering and computer science at MIT, did was wire up the cores  the same way computers hooked to the Internet do. Each core would have its own router, which could send a packet down any of several paths, depending on the condition of the network as a whole. Peh says that the buses take up a lot of power, because they are trying to drive long wires to eight or 10 cores at the same time.

In the type of network Peh is proposing, on the other hand, each core communicates only with the four cores nearest it. “Here, you’re driving short segments of wires, so that allows you to go lower in voltage,” she said.


Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments