Featured Articles

AMD sheds light on stacked DRAM APUs

AMD sheds light on stacked DRAM APUs

AMD is fast tracking stacked DRAM deployment and a new presentation leaked by the company  points to APUs with stacked DRAM,…

More...
Nvidia officially launches the 8-inch Shield Tablet

Nvidia officially launches the 8-inch Shield Tablet

As expected and reported earlier, Nvidia has now officially announced its newest Shield device, the new 8-inch Shield Tablet. While the…

More...
Intel launches new mobile Haswell and Bay Trail parts

Intel launches new mobile Haswell and Bay Trail parts

Intel has introduced seven new Haswell mobile parts and four Bay Trail SoC chips, but most of them are merely clock…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
AMD A8-7600 Kaveri APU reviewed

AMD A8-7600 Kaveri APU reviewed

Today we'll take a closer look at AMD's A8-7600 APU Kaveri APU, more specifically we'll examine the GPU performance you can…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Monday, 21 May 2012 12:19

Boffins work out way for super fast ReRAM

Written by Nick Farrell



Built from pure silicon oxide


Boffins at UCL have developed the first purely silicon oxide based resistive ram (ReRAM) memory chip. The chip can operate in ambient conditions and could be the next thing for super fast memory.

ReRAM memory chips are based on materials whose electrical resistance changes when a voltage is applied, so they can retain data without power. These chips promise significantly greater storage capacity than current technology with less energy and space. Dr Tony Kenyon, UCL electronic and electrical engineering said that his ReRAM memory chips need just a thousandth of the energy and are around a hundred times faster than standard flash memory chips.

The fact that the device can operate in ambient conditions and has a continuously variable resistance opens up a huge range of potential applications. Unlike other silicon oxide chips in development, the team says its devices do not require a vacuum to work and are therefore potentially cheaper and more durable.

blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments