Featured Articles

IHS teardown reveals Galaxy S5 BOM

IHS teardown reveals Galaxy S5 BOM

Research firm IHS got hold of Samsung’s new flagship smartphone and took it apart to the last bolt to figure out…

More...
Galaxy S5, HTC One M8 available selling well

Galaxy S5, HTC One M8 available selling well

Samsung’s Galaxy S5 has finally gone on sale and it can be yours for €699, which is quite a lot of…

More...
Intel lists Haswell refresh parts

Intel lists Haswell refresh parts

Intel has added a load of Haswell refresh parts to its official price list and there really aren’t any surprises to…

More...
Respawn confirms Titanfall DLC for May

Respawn confirms Titanfall DLC for May

During his appearance at PAX East panel and confirmed on Twitter, Titanfall developer Respawn confirmed that the first DLC pack for…

More...
KFA2 GTX 780 Ti Hall Of Fame reviewed

KFA2 GTX 780 Ti Hall Of Fame reviewed

KFA2 gained a lot of overclocking experience with the GTX 780 Hall of Fame (HOF), which we had a chance to…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Monday, 21 May 2012 12:19

Boffins work out way for super fast ReRAM

Written by Nick Farrell



Built from pure silicon oxide


Boffins at UCL have developed the first purely silicon oxide based resistive ram (ReRAM) memory chip. The chip can operate in ambient conditions and could be the next thing for super fast memory.

ReRAM memory chips are based on materials whose electrical resistance changes when a voltage is applied, so they can retain data without power. These chips promise significantly greater storage capacity than current technology with less energy and space. Dr Tony Kenyon, UCL electronic and electrical engineering said that his ReRAM memory chips need just a thousandth of the energy and are around a hundred times faster than standard flash memory chips.

The fact that the device can operate in ambient conditions and has a continuously variable resistance opens up a huge range of potential applications. Unlike other silicon oxide chips in development, the team says its devices do not require a vacuum to work and are therefore potentially cheaper and more durable.

blog comments powered by Disqus

To be able to post comments please log-in with Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments