Featured Articles

KitKat has more than a fifth of Android users

KitKat has more than a fifth of Android users

Android 4.4 is now running on more than a fifth of Android devices, according to Google’s latest figures.

More...
Nvidia introduces five new Quadro cards

Nvidia introduces five new Quadro cards

Nvidia has revamped its Quadro professional graphics line-up with a total of five new cards, two of which are based on…

More...
AMD Tonga XT graphics cards come later

AMD Tonga XT graphics cards come later

According to sources who wish to remain unnamed, we should see an AMD Tonga XT-based graphics card launched sometime in September.

More...
Nvidia Maxwell Geforce 800 comes in September

Nvidia Maxwell Geforce 800 comes in September

Nvidia was always cautious when talking about upcoming Maxwell parts, the first of which was launched back in March and based…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Thursday, 15 November 2012 11:25

Everspin comes up with non-volatile magnetic RAM

Written by Nick Farrell



500 times faster than NAND


Everspin has announced that it’s shipping the first 64Mb ST-MRAM in a DDR3-compatible module.

According to its press release the MRAM (Magnetoresistive Random Access Memory) transfer data at DDR3-1600 clock rates, but access latencies are much lower than flash RAM. This means that they can manage 500 times the performance of  conventional NAND. It works by using a single magnetic tunnel junction (MTJ) and one transistor. When power comes on spin-polarized electrons tunnel through the dielectric barrier. The angular momentum of the electrons is transferred to the magnetic layer, “flipping” the polarisation. The cell is read by measuring its resistance.

The advantage is that the spin-torque technology uses much less power for writes than conventional MRAM and can be scaled. Once the data has been written, cells don’t need to be refreshed. MRAM retains its data if the power is turned off, and it doesn’t draw power to retain data during active system operation.

You can check out the geeky details here.

blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments