Featured Articles

Analysts expect ARM to do well next year

Analysts expect ARM to do well next year

British chip designer ARM could cash in on the mobile industry's rush to transition to 64-bit operating systems and hardware.

More...
Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Samsung has lost smartphone market share, ending the quarter on a low note and Xiaomi appears to be the big winner.

More...
Intel Broadwell 15W coming to CES

Intel Broadwell 15W coming to CES

It looks like Intel will be showing off its 14nm processors, codenames Broadwell, in a couple of weeks at CES 2015.

More...
Gainward GTX 980 Phantom reviewed

Gainward GTX 980 Phantom reviewed

Today we’ll be taking a closer look at the recently introduced Gainward GTX 980 4GB with the company’s trademark Phantom cooler.

More...
Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac has been in the nettop and mini-PC space for more than four years now and it has managed to carve…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Friday, 16 November 2012 11:25

Texas boffins increase density of HDD

Written by Nick Farrell



Not bad for a state which doesn't believe in evolution


Researchers at the University Texas took time out from their busy schedule of proving that the world is 6000 years old by coming up with a design that could circumvent some of the pressing limitations of data storage technology.

The researchers at the University of Texas were able to produce nanoscale self-assembling dots, and work around the limitations that hamper traditional designs. It means that cheap, reliable hard drives with record storage density. It all depends on a process to synthesise block copolymers, a material that can quickly self-assemble into dots that are less than 10 nanometers in size.

The polymer will follow any pattern etched into the surface on which it is deposited, which is perfect for disk drives. When the polymer is slapped on a properly prepared metal substrate it will conform itself and produce the required dot design with a high degree of accuracy.

The University is working with Hitachi Global Storage Technologies to try and adapt this technology to their products and integrate it into a mainstream manufacturing process.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments