Featured Articles

TSMC: Volume production of 16nm FinFET in 2H 2015

TSMC: Volume production of 16nm FinFET in 2H 2015

TSMC has announced that it will begin volume production of 16nm FinFET products in the second half of 2015, in late…

More...
AMD misses earnings targets, announces layoffs

AMD misses earnings targets, announces layoffs

AMD has missed earnings targets and is planning a substantial job cuts. The company reported quarterly earnings yesterday and the street is…

More...
Did Google botch the Nexus 6 and Nexus 9?

Did Google botch the Nexus 6 and Nexus 9?

As expected, Google has finally released the eagerly awaited Nexus 6 phablet and its first 64-bit device, the Nexus 9 tablet.

More...
Gainward GTX 970 Phantom previewed

Gainward GTX 970 Phantom previewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
EVGA GTX 970 SC ACX 2.0 reviewed

EVGA GTX 970 SC ACX 2.0 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Friday, 22 February 2013 11:03

3D printers can run off body parts

Written by Nick Farrell



Ear is one I made earlier

Boffins at Cornell University have been showing the potential for 3D printers by creating a replacement ear using a 3D printer and an injection of living cells.

Once refined, the technique will allow biomedical engineers to print customised ears for children born with malformed ones, or people who have lost theirs and have not found them down the back of the sofa. While prosthetic reconstructions are suboptimal; they don't look realistic and they lack the qualities of real tissue, the 3D printer versions are pretty good.

Alyssa Reiffel, Lawrence Bonassar, Jason Spector, and colleagues employed a 3D printing technique they refer to as high-fidelity tissue engineering. They used cartilage from a cow, but think that one day should be able to cultivate enough of a person's ear so that the growth and implantation can happen right there in the lab.

It all starts with a 3-D camera that rapidly rotates around a head for a picture of the existing ear to match. It beams the ear's geometry into a computer. From that image, the 3-D printer produced a soft mold of the ear. Bonassar injected it with a special collagen gel that's full of cow cells that produce cartilage - forming a scaffolding. Cartilage grows to replace the collagen and after three months, it appeared to be a flexible and workable outer ear.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments