Featured Articles

Analysts expect ARM to do well next year

Analysts expect ARM to do well next year

British chip designer ARM could cash in on the mobile industry's rush to transition to 64-bit operating systems and hardware.

More...
Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Samsung has lost smartphone market share, ending the quarter on a low note and Xiaomi appears to be the big winner.

More...
Intel Broadwell 15W coming to CES

Intel Broadwell 15W coming to CES

It looks like Intel will be showing off its 14nm processors, codenames Broadwell, in a couple of weeks at CES 2015.

More...
Gainward GTX 980 Phantom reviewed

Gainward GTX 980 Phantom reviewed

Today we’ll be taking a closer look at the recently introduced Gainward GTX 980 4GB with the company’s trademark Phantom cooler.

More...
Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac has been in the nettop and mini-PC space for more than four years now and it has managed to carve…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Friday, 22 February 2013 11:03

3D printers can run off body parts

Written by Nick Farrell



Ear is one I made earlier

Boffins at Cornell University have been showing the potential for 3D printers by creating a replacement ear using a 3D printer and an injection of living cells.

Once refined, the technique will allow biomedical engineers to print customised ears for children born with malformed ones, or people who have lost theirs and have not found them down the back of the sofa. While prosthetic reconstructions are suboptimal; they don't look realistic and they lack the qualities of real tissue, the 3D printer versions are pretty good.

Alyssa Reiffel, Lawrence Bonassar, Jason Spector, and colleagues employed a 3D printing technique they refer to as high-fidelity tissue engineering. They used cartilage from a cow, but think that one day should be able to cultivate enough of a person's ear so that the growth and implantation can happen right there in the lab.

It all starts with a 3-D camera that rapidly rotates around a head for a picture of the existing ear to match. It beams the ear's geometry into a computer. From that image, the 3-D printer produced a soft mold of the ear. Bonassar injected it with a special collagen gel that's full of cow cells that produce cartilage - forming a scaffolding. Cartilage grows to replace the collagen and after three months, it appeared to be a flexible and workable outer ear.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments