Featured Articles

Nvidia Shield 2 shows up in AnTuTu

Nvidia Shield 2 shows up in AnTuTu

Nvidia’s original Shield console launched last summer to mixed reviews. It went on sale in the US and so far Nvidia…

More...
AMD CSO John Byrne talks ARM

AMD CSO John Byrne talks ARM

We had a chance to talk about AMD’s upcoming products with John Byrne, Chief Sales Officer, AMD. We covered a number…

More...
AMD Chief Sales Officer thinks GPU leadership is critical

AMD Chief Sales Officer thinks GPU leadership is critical

We had a chance to talk to John Byrne who spent the last two years as Senior Vice President and Chief…

More...
OpenPlus One $299 5.5-inch Full HD phone

OpenPlus One $299 5.5-inch Full HD phone

OnePlus is one of the few small companies that might disrupt the Android phone market, dominated by giant outfits like Samsung.…

More...
AMD Never Settle Forever bundle hits 200-series cards

AMD Never Settle Forever bundle hits 200-series cards

AMD’s Never Settle bundles have been around for a while and the community response has been extremely positive. When AMD launched…

More...
AMD shipping Beema APUs

AMD shipping Beema APUs

According to Lisa Su, SVP & GM, Global Business Units at AMD, Beema notebook parts have started shipping to manufacturers last…

More...
KFA2 GTX 780 Ti Hall Of Fame reviewed

KFA2 GTX 780 Ti Hall Of Fame reviewed

KFA2 gained a lot of overclocking experience with the GTX 780 Hall of Fame (HOF), which we had a chance to…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 03 December 2013 12:17

MIT develops 3D camera which works in the dark

Written by Nick Farrell



Night vision gets better

Researchers from MIT have managed to create a 3D camera which works in the dark. The technology gets its sharp images of dimly lit objects using photons, which are elementary particles that are not composed of smaller particles.

The hardware is not unusual but the software which gathers the information and stiches it together is new. Electrical engineer Ahmed Kirmani and his colleagues at the university developed an algorithm to look at correlations between neighbouring parts of an object lit by pulses of light as well as the science of low light measurements. The time it takes for photons from the laser pulses to be reflected back from the object and read by the detector, provides information about the depth of the object being examined.

A pulse is fired until a reflected photon is recorded by a detector and using the algorithm, each illuminated location is matched to a pixel in the image that is created. The time it takes for photons from the laser pulses to be reflected back from the object and read by the detector, provides information about the depth of the object being examined. At the moment the images are in black and white as the laser produces light of a single wavelength, but the device can pick out some different materials because of the rate they reflect the laser’s colour.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

To be able to post comments please log-in with Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments