Featured Articles

Intel refreshes CPU roadmap

Intel refreshes CPU roadmap

Intel has revealed an update to its CPU roadmap and some things have changed in 2015 and beyond. Let’s start with the…

More...
Hands on: Nvidia Shield Tablet with Android 5.0

Hands on: Nvidia Shield Tablet with Android 5.0

We broke the news of Nvidia's ambitious gaming tablet plans back in May and now the Shield tablet got a bit…

More...
Nokia N1 Android tablet ships in Q1 2015

Nokia N1 Android tablet ships in Q1 2015

Nokia has announced its first Android tablet and when we say Nokia, we don’t mean Microsoft. The Nokia N1 was designed…

More...
Marvell launches octa-core 64-bit PXA1936

Marvell launches octa-core 64-bit PXA1936

Marvell is better known for its storage controllers, but the company doesn’t want to give up on the smartphone and…

More...
Nvidia GTX 970 SLI tested

Nvidia GTX 970 SLI tested

Nvidia recently released two new graphics cards based on its latest Maxwell GPU architecture, with exceptional performance-per-watt. The Geforce GTX 970…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 03 December 2013 12:17

MIT develops 3D camera which works in the dark

Written by Nick Farrell



Night vision gets better

Researchers from MIT have managed to create a 3D camera which works in the dark. The technology gets its sharp images of dimly lit objects using photons, which are elementary particles that are not composed of smaller particles.

The hardware is not unusual but the software which gathers the information and stiches it together is new. Electrical engineer Ahmed Kirmani and his colleagues at the university developed an algorithm to look at correlations between neighbouring parts of an object lit by pulses of light as well as the science of low light measurements. The time it takes for photons from the laser pulses to be reflected back from the object and read by the detector, provides information about the depth of the object being examined.

A pulse is fired until a reflected photon is recorded by a detector and using the algorithm, each illuminated location is matched to a pixel in the image that is created. The time it takes for photons from the laser pulses to be reflected back from the object and read by the detector, provides information about the depth of the object being examined. At the moment the images are in black and white as the laser produces light of a single wavelength, but the device can pick out some different materials because of the rate they reflect the laser’s colour.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments