Featured Articles

TSMC: Volume production of 16nm FinFET in 2H 2015

TSMC: Volume production of 16nm FinFET in 2H 2015

TSMC has announced that it will begin volume production of 16nm FinFET products in the second half of 2015, in late…

More...
AMD misses earnings targets, announces layoffs

AMD misses earnings targets, announces layoffs

AMD has missed earnings targets and is planning a substantial job cuts. The company reported quarterly earnings yesterday and the street is…

More...
Did Google botch the Nexus 6 and Nexus 9?

Did Google botch the Nexus 6 and Nexus 9?

As expected, Google has finally released the eagerly awaited Nexus 6 phablet and its first 64-bit device, the Nexus 9 tablet.

More...
Gainward GTX 970 Phantom previewed

Gainward GTX 970 Phantom previewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
EVGA GTX 970 SC ACX 2.0 reviewed

EVGA GTX 970 SC ACX 2.0 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 04 March 2014 11:36

Researchers close to sorting out Lithium-sulphur batteries

Written by Nick Farrell



Smelly power

Researchers have worked out a way to improve Lithium-sulphur batteries to make sure that they can be more commercial.

The technology promises to store four to five times as much energy as today’s best lithium-ion batteries but they are aren’t practical because they don’t last very long. Lithium-ion batteries can last 1,000 charge cycles, but lithium- sulphur batteries tend to fail before they’re charged 100 times.

Jeffrey Pyun, a chemist at the University of Arizona thinks electrodes made from sulphur polymers, like other plastic products, should be inexpensive to manufacture on a large scale. Then last year, Pyun’s group reported a way to transform this sulphur into an inexpensive cathode material. By heating the sulphur to 185 ºC and then adding an organic compound, 1,3-diisopropenylbenzene, the researchers form a copolymer containing strings of sulphur atoms tangled up with the diisopropenylbenzene.

To become a commercial product, a battery made with the sulphur polymer will need to have a steady storage capacity throughout its lifetime and be able to last the 1,000 cycles of today’s batteries. To get there, Pyun is experimenting with other kinds of sulphur copolymers that may have better properties.

He is not there yet but he thinks he is pretty close.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments