Featured Articles

5th Generation Broadwell 14nm family comes in three lines

5th Generation Broadwell 14nm family comes in three lines

Intel's 5th Core processor family, codenamed Broadwell, will launch in three lines for the mobile segment. We are talking about upcoming…

More...
Broadwell Chromebooks coming in late Q1 2015

Broadwell Chromebooks coming in late Q1 2015

Google's Chromebook OS should be updating automatically every six weeks, but Intel doesn't come close with its hardware refresh schedule.

More...
New round of Nexus phone rumour kicks off

New round of Nexus phone rumour kicks off

Rumours involving upcoming Nexus devices are nothing uncommon, but this year there is a fair bit of confusion, especially on the…

More...
Nvidia officially launches the 8-inch Shield Tablet

Nvidia officially launches the 8-inch Shield Tablet

As expected and reported earlier, Nvidia has now officially announced its newest Shield device, the new 8-inch Shield Tablet. While the…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 04 March 2014 11:36

Researchers close to sorting out Lithium-sulphur batteries

Written by Nick Farrell



Smelly power

Researchers have worked out a way to improve Lithium-sulphur batteries to make sure that they can be more commercial.

The technology promises to store four to five times as much energy as today’s best lithium-ion batteries but they are aren’t practical because they don’t last very long. Lithium-ion batteries can last 1,000 charge cycles, but lithium- sulphur batteries tend to fail before they’re charged 100 times.

Jeffrey Pyun, a chemist at the University of Arizona thinks electrodes made from sulphur polymers, like other plastic products, should be inexpensive to manufacture on a large scale. Then last year, Pyun’s group reported a way to transform this sulphur into an inexpensive cathode material. By heating the sulphur to 185 ºC and then adding an organic compound, 1,3-diisopropenylbenzene, the researchers form a copolymer containing strings of sulphur atoms tangled up with the diisopropenylbenzene.

To become a commercial product, a battery made with the sulphur polymer will need to have a steady storage capacity throughout its lifetime and be able to last the 1,000 cycles of today’s batteries. To get there, Pyun is experimenting with other kinds of sulphur copolymers that may have better properties.

He is not there yet but he thinks he is pretty close.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments