Featured Articles

Intel refreshes CPU roadmap

Intel refreshes CPU roadmap

Intel has revealed an update to its CPU roadmap and some things have changed in 2015 and beyond. Let’s start with the…

More...
Hands on: Nvidia Shield Tablet with Android 5.0

Hands on: Nvidia Shield Tablet with Android 5.0

We broke the news of Nvidia's ambitious gaming tablet plans back in May and now the Shield tablet got a bit…

More...
Nokia N1 Android tablet ships in Q1 2015

Nokia N1 Android tablet ships in Q1 2015

Nokia has announced its first Android tablet and when we say Nokia, we don’t mean Microsoft. The Nokia N1 was designed…

More...
Marvell launches octa-core 64-bit PXA1936

Marvell launches octa-core 64-bit PXA1936

Marvell is better known for its storage controllers, but the company doesn’t want to give up on the smartphone and…

More...
Nvidia GTX 970 SLI tested

Nvidia GTX 970 SLI tested

Nvidia recently released two new graphics cards based on its latest Maxwell GPU architecture, with exceptional performance-per-watt. The Geforce GTX 970…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Thursday, 24 June 2010 11:07

Boffins move quantum computers closer to reality

Written by Nick Farell
y_exclamation

Not sure which reality

Boffins say they have had a breakthrough in making quantum computers move from an idea in their heads to a working machine. A UK-Dutch team from the University of Surrey, UCL (University College) London, Heriot-Watt University in Edinburgh, and the FOM Institute for Plasma Physics near Utrecht have managed to control an electron on silicon for the first time.

According to the research paper in Nature, the scientists have created a simple version of Schrodinger's cat which is capable of being both dead and alive at the same time, and only requires feeding exactly half the time.

Professor Ben Murdin, Photonics Group Leader at the University of Surrey said that this was a real breakthrough for modern electronics and has huge potential for the future. The breakthrough involves using lasers in a short, high intensity pulse to put an electron orbiting within silicon into two states at once - a so-called quantum superposition state.

They then controlled the proton so that the electrons emit a burst of light at a well-defined time after the superposition was created. This burst of light is called a photon echo; and its observation proved we have full control over the quantum state of the atoms.

Professor Murdin said his work shows that some of the quantum engineering already demonstrated by atomic physicists in very sophisticated instruments called cold atom traps, can be implemented in the type of silicon chip used in making the much more common transistor.

Professor Gabriel Aeppli, director of the London Centre for Nanotechnology added that the findings were highly significant to academia and business alike. "Next to iron and ice, silicon is the most important inorganic crystalline solid because of our tremendous ability to control electrical conduction via chemical and electrical means... Our work adds control of quantum superpositions to the silicon toolbox."

Nick Farell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments