Featured Articles

Hands on: Nvidia Shield Tablet with Android 5.0

Hands on: Nvidia Shield Tablet with Android 5.0

We broke the news of Nvidia's ambitious gaming tablet plans back in May and now the Shield tablet got a bit…

More...
Nokia N1 Android tablet ships in Q1 2015

Nokia N1 Android tablet ships in Q1 2015

Nokia has announced its first Android tablet and when we say Nokia, we don’t mean Microsoft. The Nokia N1 was designed…

More...
Marvell launches octa-core 64-bit PXA1936

Marvell launches octa-core 64-bit PXA1936

Marvell is better known for its storage controllers, but the company doesn’t want to give up on the smartphone and…

More...
TSMC 16nm FinFET Plus in risk production

TSMC 16nm FinFET Plus in risk production

TSMC’s next generation 16nm process has reached an important milestone – 16nm FinFET Plus (16FF+) is now in risk production.

More...
Nvidia GTX 970 SLI tested

Nvidia GTX 970 SLI tested

Nvidia recently released two new graphics cards based on its latest Maxwell GPU architecture, with exceptional performance-per-watt. The Geforce GTX 970…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Friday, 19 August 2011 08:53

Stanford comes up with better organic displays

Written by Nick Farell
y_exclamation

More flexible than a Romanian gymnast
Stanford and Harvard boffins have emerged from their smoke filled labs with faster organic semiconductors for flexible displays. According to a Stanford University press release, they have created a new material for high-speed organic semiconductors with a new manufacturing method that can take years off the development time line.

The display world is jolly excited about organic semiconductors but they haven’t yet reached the speeds needed to drive high definition displays. This has forced them to use inorganic materials such as silicon, which are fast and durable but don’t bend. The new organic electronic material has also taken ages to make because boffins had to brew up large numbers of candidate materials and then test them.

The Stanford boffins decided to try a computational predictive approach to substantially narrow the field of candidates before expending the time and energy to make any of them. Anatoliy Sokolov, a postdoctoral researcher in chemical engineering at Stanford who worked on synthesizing the material, said that synthesizing some of these compounds can take years.

Sokolov used a material known as DNTT, which had already been shown to be a good organic semiconductor. They looked at different compounds possessing chemical and electrical properties that seemed likely to enhance the parent material’s performance if they were attached.

After they whittled it down to a short list of seven promising candidates the Harvard team predicted that two of the seven candidates would most readily accept a charge. They calculated that one of those two was markedly faster in passing that charge from molecule to molecule, so that became their choice. From their analysis, they worked out the new material to be about twice as fast as its parent.

Sokolov said it took about a year and a half to perfect the synthesis of the new compound and make enough of it for testing. “Our final yield from what we produced was something like 3 percent usable material and then we still had to purify it.”

But what was important was that when the team members tested the final product, their predictions were borne out and the modified material doubled the speed of the parent material. Apparently their new material is more than 30 times faster than the amorphous silicon currently used for liquid crystal displays in products such as flat panel televisions and computer monitors.

Normally it would have taken several years to both synthesize and characterize all the seven candidate compounds. With this approach, the boffins could focus on the most promising candidate with the best performance, as predicted by theory.


Last modified on Friday, 19 August 2011 09:45

Nick Farell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments