Featured Articles

Analysts expect ARM to do well next year

Analysts expect ARM to do well next year

British chip designer ARM could cash in on the mobile industry's rush to transition to 64-bit operating systems and hardware.

More...
Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Samsung has lost smartphone market share, ending the quarter on a low note and Xiaomi appears to be the big winner.

More...
Intel Broadwell 15W coming to CES

Intel Broadwell 15W coming to CES

It looks like Intel will be showing off its 14nm processors, codenames Broadwell, in a couple of weeks at CES 2015.

More...
Gainward GTX 980 Phantom reviewed

Gainward GTX 980 Phantom reviewed

Today we’ll be taking a closer look at the recently introduced Gainward GTX 980 4GB with the company’s trademark Phantom cooler.

More...
Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac has been in the nettop and mini-PC space for more than four years now and it has managed to carve…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 29 November 2011 12:04

Japanese outfit creates super transmitting chip

Written by Nick Farell

y exclamation

Should go up to 30Gbps

Japanese semiconductor outfit Rohm has built a chip and antenna that can transmitting 1.5Gbps and should be able to manage 30Gbps soon. The fastest 802.11 (WiFi) transmission speeds can only manage a limp 150Mbps, and the incoming WiGig standard peaks at 7Gbps.

What the boffins think is significant is that the Rohm has managed to set up the reception and transmission of terahertz waves (300GHz to 3THz) using a chip and antenna that’s just two centimeters long. It will only cost $5 to make when it comes market in a few years. Current terahertz-level gear is large, expensive, and only capable of data rates of 100Mbps.

Sadly it is not going to replace standard 2 and 5Ghz home networks, since it is such a high frequency it has to be directional to within a millimetre. Terahertz signals also fall prey to atmospheric radiation.

More here.


blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments