Featured Articles

IHS teardown reveals Galaxy S5 BOM

IHS teardown reveals Galaxy S5 BOM

Research firm IHS got hold of Samsung’s new flagship smartphone and took it apart to the last bolt to figure out…

More...
Galaxy S5, HTC One M8 available selling well

Galaxy S5, HTC One M8 available selling well

Samsung’s Galaxy S5 has finally gone on sale and it can be yours for €699, which is quite a lot of…

More...
Intel lists Haswell refresh parts

Intel lists Haswell refresh parts

Intel has added a load of Haswell refresh parts to its official price list and there really aren’t any surprises to…

More...
Respawn confirms Titanfall DLC for May

Respawn confirms Titanfall DLC for May

During his appearance at PAX East panel and confirmed on Twitter, Titanfall developer Respawn confirmed that the first DLC pack for…

More...
KFA2 GTX 780 Ti Hall Of Fame reviewed

KFA2 GTX 780 Ti Hall Of Fame reviewed

KFA2 gained a lot of overclocking experience with the GTX 780 Hall of Fame (HOF), which we had a chance to…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Friday, 07 September 2012 09:23

Vienna manages quantum teleporting

Written by Nick Farrell

y exclamation

This means nothing to me

Boffins at the University of Vienna and the Austrian Academy of Sciences have achieved quantum teleportation over a record distance of 143 km.

The move is a step towards satellite-based quantum communication. According to "Nature", which we get for the find Schroedinger's cat competition, Austrian physicist Anton Zeilinger and his team has successfully transmitted quantum states between the two Canary Islands of La Palma and Tenerife, over a distance of 143 km.

In the quantum teleportation experiment, quantum states, not matter, are exchanged between two parties over distances. The process works even if the location of the recipient is not known.

The photons that encode the quantum states have to be transported reliably over long distances without compromising the fragile quantum state. Xiao-song Ma, one of the scientists involved in the experiment, said that the realisation of quantum teleportation over a distance of 143 km has been a huge technological challenge.

The photons had to be sent directly through the turbulent atmosphere between the two islands. The use of optical fibres is not suitable for teleportation experiments over such great distances, as signal loss would be too severe.

Conventional data is sent alongside the quantum information, enabling the recipient to decipher the transferred signal with a higher efficiency. "Our experiment shows how mature 'quantum technologies' are today, and how useful they can be for practical applications," says Zeilinger.

The next step is satellite-based quantum teleportation, which should enable quantum communication on a global scale.


Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

To be able to post comments please log-in with Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments