Featured Articles

Snapdragon 400 is Qualcomm’s SoC for watches, wearables

Snapdragon 400 is Qualcomm’s SoC for watches, wearables

We wanted to learn a bit more about Qualcomm's plans for wearables and it turns out that the company believes its…

More...
Qualcomm sampling 20nm Snapdragon 810

Qualcomm sampling 20nm Snapdragon 810

We had a chance to talk to Michelle Leyden-Li, Senior Director of Marketing, QCT at Qualcomm and get an update on…

More...
EVGA GTX 970 SC ACX 2.0 reviewed

EVGA GTX 970 SC ACX 2.0 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Nvidia GTX 980 reviewed

Nvidia GTX 980 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
PowerColor TurboDuo R9 285 reviewed

PowerColor TurboDuo R9 285 reviewed

Today we will take a look at the PowerColor TurboDuo Radeon R9 285. The card is based on AMD’s new…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Friday, 07 September 2012 09:23

Vienna manages quantum teleporting

Written by Nick Farrell

y exclamation

This means nothing to me

Boffins at the University of Vienna and the Austrian Academy of Sciences have achieved quantum teleportation over a record distance of 143 km.

The move is a step towards satellite-based quantum communication. According to "Nature", which we get for the find Schroedinger's cat competition, Austrian physicist Anton Zeilinger and his team has successfully transmitted quantum states between the two Canary Islands of La Palma and Tenerife, over a distance of 143 km.

In the quantum teleportation experiment, quantum states, not matter, are exchanged between two parties over distances. The process works even if the location of the recipient is not known.

The photons that encode the quantum states have to be transported reliably over long distances without compromising the fragile quantum state. Xiao-song Ma, one of the scientists involved in the experiment, said that the realisation of quantum teleportation over a distance of 143 km has been a huge technological challenge.

The photons had to be sent directly through the turbulent atmosphere between the two islands. The use of optical fibres is not suitable for teleportation experiments over such great distances, as signal loss would be too severe.

Conventional data is sent alongside the quantum information, enabling the recipient to decipher the transferred signal with a higher efficiency. "Our experiment shows how mature 'quantum technologies' are today, and how useful they can be for practical applications," says Zeilinger.

The next step is satellite-based quantum teleportation, which should enable quantum communication on a global scale.


Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments