Featured Articles

TSMC: Volume production of 16nm FinFET in 2H 2015

TSMC: Volume production of 16nm FinFET in 2H 2015

TSMC has announced that it will begin volume production of 16nm FinFET products in the second half of 2015, in late…

More...
AMD misses earnings targets, announces layoffs

AMD misses earnings targets, announces layoffs

AMD has missed earnings targets and is planning a substantial job cuts. The company reported quarterly earnings yesterday and the street is…

More...
Did Google botch the Nexus 6 and Nexus 9?

Did Google botch the Nexus 6 and Nexus 9?

As expected, Google has finally released the eagerly awaited Nexus 6 phablet and its first 64-bit device, the Nexus 9 tablet.

More...
Gainward GTX 970 Phantom previewed

Gainward GTX 970 Phantom previewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
EVGA GTX 970 SC ACX 2.0 reviewed

EVGA GTX 970 SC ACX 2.0 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Monday, 13 May 2013 11:09

Boffins create touch sensor which can feel through steel

Written by Nick Farrell



QTC Ultra Sensor is a reality

UK outfit Peratech created an ultra sensitive touch sensor that can respond to light touches even through steel or glass.

Peratech's CTO David Lussey announced that his company as designed a sensor which is so ensitive that it can be mounted behind a 0.1mm stainless steel or 0.5mm glass sheet and still detect the pressure of a finger on the top of the sheet. Peratech says the QTC Ultra Sensor can either be fitted as a small piece of QTC sheeting or screen printed on the back of the steel plate as required by the product designer, eliminating this problem.

It can also work on plastics, glass or wood provided that there is enough flex to activate the QTC switch. Lussey thinks that the technology will end up behind translucent materials to create secret till lit buttons. 

QTC material has nano-sized particles of conductive material evenly distributed in a non-conductive polymer. When a force is applied the particles move close enough for electrons to flow between the particles using an effect called Quantum Tunnelling. QTC technology has been used to make the world’s thinnest switch at only a few microns thick and can be made into any shape required or printed with whatever level of responsiveness to pressure that is needed.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments