Featured Articles

5th Generation Broadwell 14nm family comes in three lines

5th Generation Broadwell 14nm family comes in three lines

Intel's 5th Core processor family, codenamed Broadwell, will launch in three lines for the mobile segment. We are talking about upcoming…

More...
Broadwell Chromebooks coming in late Q1 2015

Broadwell Chromebooks coming in late Q1 2015

Google's Chromebook OS should be updating automatically every six weeks, but Intel doesn't come close with its hardware refresh schedule.

More...
New round of Nexus phone rumour kicks off

New round of Nexus phone rumour kicks off

Rumours involving upcoming Nexus devices are nothing uncommon, but this year there is a fair bit of confusion, especially on the…

More...
Nvidia officially launches the 8-inch Shield Tablet

Nvidia officially launches the 8-inch Shield Tablet

As expected and reported earlier, Nvidia has now officially announced its newest Shield device, the new 8-inch Shield Tablet. While the…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Wednesday, 12 June 2013 11:09

Quantum dreams may be dead

Written by Nick Farrell

Or alive

Quantum cryptography might not be the security secret weapon that the industry has been hoping for. In theory Quantum cryptography might allow you to encrypt a message in such a way that it would never be read by anyone. But recently methods that were once thought to be fundamentally unbreakable have been shown to be anything but.

Physicist Renato Renner from the Institute of Theoretical Physics in Zurich said the problem was that systems were not being built correctly. In 2010, for instance, that a hacker could blind a detector with a strong pulse, rendering it unable to see the secret-keeping photons.

Renner also said that there are many other problems. Photons are generated using a laser tuned to such a low intensity that it’s producing one single photon at a time. There is a certain probability that the laser will make a photon encoded with your secret information and then a second photon with that same information. All an enemy has to do is steal that second photon and they could gain access to your data.

He told Wired that if there were better control over quantum systems than we have with today’s technology then perhaps quantum cryptography could be less susceptible to problems, but such advances are at least 10 years away.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments