The 30-kilowatt beam combines many fibre lasers operating a slightly different wavelengths into a single "near perfect" band of light. Lockheed says the upgraded system produced the highest power ever documented while retaining beam quality and electrical efficiency and using half of the electrical power than solid-state lasers. The idea is that the systems could be installed on military platforms such as aircraft, helicopters, ships, and trucks.
However, you need to get a 100-kilowatt system to destroy military targets like incoming artillery or drones. It will also have to maintain near-perfect beam quality over long distances. What's more, electrical efficiency will be crucial to ensuring the system can be cooled effectively and made manageable in size. The next stage is to develop a 60-kilowatt laser.
It should be noted that using lasers against humans isn’t exactly legal, although technically it can be done with relative ease. Use of such blinding weapons is prohibited. There are already a number of experimental laser systems designed to take out missiles, along with smaller systems used to wreck sensitive optical sensors on military gear, namely main battle tanks.