Featured Articles

Gainward GTX 970 Phantom previewed

Gainward GTX 970 Phantom previewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Snapdragon 400 is Qualcomm’s SoC for watches, wearables

Snapdragon 400 is Qualcomm’s SoC for watches, wearables

We wanted to learn a bit more about Qualcomm's plans for wearables and it turns out that the company believes its…

More...
Qualcomm sampling 20nm Snapdragon 810

Qualcomm sampling 20nm Snapdragon 810

We had a chance to talk to Michelle Leyden-Li, Senior Director of Marketing, QCT at Qualcomm and get an update on…

More...
EVGA GTX 970 SC ACX 2.0 reviewed

EVGA GTX 970 SC ACX 2.0 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Nvidia GTX 980 reviewed

Nvidia GTX 980 reviewed

Nvidia has released two new graphics cards based on its latest Maxwell GPU architecture. The Geforce GTX 970 and Geforce GTX…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Monday, 03 February 2014 13:56

Laser weapons getting closer

Written by Nick Farrell



Lockheed Martin shot first

Defence contractor Lockheed Martin has successfully demonstrated a 30-kilowatt fibre optic laser for the battlefield. As one of the most powerful lasers ever seen, the gizmo is seen as a major step forward to getting directed-energy weapons on the battlefield.

The 30-kilowatt beam combines many fibre lasers operating a slightly different wavelengths into a single "near perfect" band of light. Lockheed says the upgraded system produced the highest power ever documented while retaining beam quality and electrical efficiency and using half of the electrical power than solid-state lasers. The idea is that the systems could be installed on military platforms such as aircraft, helicopters, ships, and trucks.

However, you need to get a 100-kilowatt system to destroy military targets like incoming artillery or drones. It will also have to maintain near-perfect beam quality over long distances. What's more, electrical efficiency will be crucial to ensuring the system can be cooled effectively and made manageable in size. The next stage is to develop a 60-kilowatt laser.

It should be noted that using lasers against humans isn’t exactly legal, although technically it can be done with relative ease. Use of such blinding weapons is prohibited. There are already a number of experimental laser systems designed to take out missiles, along with smaller systems used to wreck sensitive optical sensors on military gear, namely main battle tanks.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments