Featured Articles

Analysts expect ARM to do well next year

Analysts expect ARM to do well next year

British chip designer ARM could cash in on the mobile industry's rush to transition to 64-bit operating systems and hardware.

More...
Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Huawei and Xiaomi outpace Lenovo, LG in smartphone market

Samsung has lost smartphone market share, ending the quarter on a low note and Xiaomi appears to be the big winner.

More...
Intel Broadwell 15W coming to CES

Intel Broadwell 15W coming to CES

It looks like Intel will be showing off its 14nm processors, codenames Broadwell, in a couple of weeks at CES 2015.

More...
Gainward GTX 980 Phantom reviewed

Gainward GTX 980 Phantom reviewed

Today we’ll be taking a closer look at the recently introduced Gainward GTX 980 4GB with the company’s trademark Phantom cooler.

More...
Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac ZBOX Sphere OI520 barebones vs Sphere Plus review

Zotac has been in the nettop and mini-PC space for more than four years now and it has managed to carve…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Tuesday, 29 December 2009 14:16

Boffins create molecular transistor

Written by Fudzilla staff


Image

Gold with a pinch of benzene


A team
of boffins from Yale University and the Gwangju Institute of Science and Technology in South Korea have come up with the world's first molecular transistor.

Their cunning plan was to combine pricey gold and toxic benzene to mimic a classic silicon transistor. It turns out that a single benzene molecule attached to a couple of gold contacts behaves just like a silicon transistor and researchers were able to manipulate its different energy states with varying voltages. However, the total amount of gold ever mined in human history is sufficient to fill just two Olympic sized swimming pool. With 7 billion computing hungry souls on the planet, even a tiny amount used per single chip might put a squeeze on demand.


"It's like rolling a ball up and over a hill, where the ball represents electrical current and the height of the hill represents the molecule's different energy states," said Yale Professor Mark Reed. "We were able to adjust the height of the hill, allowing current to get through when it was low, and stopping the current when it was high." In this way, the team was able to use the molecule in much the same way as regular transistors are used.

Reed did similar research in the nineties, demonstrating that individual molecules could be trapped between electrical contacts. Now his team developed new techniques allowing them to fully grasp what happens on the molecular level.

However, although the concept would in theory allow chipmakers to come up with minuscule chips, Reed is quick to point out that the development process will take years.

"We're not about to create the next generation of integrated circuits," he said. "But after many years of work gearing up to this, we have fulfilled a decade-long quest and shown that molecules can act as transistors."

More here.

Fudzilla staff

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments